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Using analytical and numerical methods we demonstrate that the pulse propagation equations accounting for
the quantum description of the Raman transition and for the optical Kerr nonlinearity have a multiparameter
family of nontopological solitary wave solutions. We study properties of these solitons and report the transition
from stable to unstable regimes of propagation. We also discuss the feasibility of observation of these struc-
tures in gas filled hollow-core photonic crystal fibers.
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Interaction of short optical pulses with resonant transi-
tions in atomic or molecular media has attracted significant
research efforts from the 1960s up to the present day. Self-
induced transparency �SIT� of optical pulses in the two-level
model, see, e.g., Ref. �1�, and soliton effects in electromag-
netically induced transparency �EIT�, see, e.g., Ref. �2�, are
the most prominent soliton related results in this research
area. The relatively recent invention of hollow-core photonic
crystal fibers �3� �HC-PCFs� has created favorable conditions
for renewing experimental efforts along these lines. Indeed,
long propagation distances, low losses, and tight focusing
with simultaneous complete suppression of diffraction make
HC-PCFs filled with gases or liquids at least worth trying,
and at most an ideal environment for experiments on reso-
nant nonlinear and quantum optics in general and on soliton
propagation especially.

Very recent experiments done in the cw and in the
quasi-cw regimes have demonstrated a dramatic increase in
the efficiency of the stimulated Raman scattering in gas-
filled HC-PCFs �4�, and EIT in acetylene filled HC-PCFs �5�.
The use of femtosecond pump sources for similar experi-
ments is likely to happen soon. Propagation of short pulses in
HC-PCFs poses, however, several theoretical problems,
which previously have not been relevant. Among those, are
the roles played by the fiber dispersion �6� and by the intrin-
sic Kerr nonlinearity of the HC-PCF �7�. In this work, we
consider solitons in the HC-PCF filed with a Raman active
gas. The main difference with our recent work �8� and with
many other papers on Raman solitons, see, e.g., Ref. �9�, is
that here we assume a strong excitation, so that the both
levels participating in the Raman transition can be populated,
and not just the ground state. This assumption does not just
add new features into the system, but introduces a family of
gap solitons not related to the nonlinear-Schrödinger �NLS�
type solitons reported for far off-resonance Raman transition
�8,10�. Combined SIT-NLS solitons, related to the Raman
solitons studied below, have been previously reported, e.g.,
in Ref. �11�.

We assume that the two optical pulses with envelopes
described by the functions B1,2�z , t� and with carrier frequen-
cies �1��2 are coupled by a Raman transition with fre-
quency �R=�1−�2 and by the Kerr nonlinearity. For the
sake of simplicity, we assume that the higher-order Stokes
and anti-Stokes components are suppressed due to high
losses �4�. The corresponding dimensionless equations are

i��z + s�t�B1 = − QB2 − �̃��B1�2 + 2�B2�2�B1, �1�

i��z − s�t�B2 = − Q*B1 − �̃��B2�2 + 2�B1�2�B2, �2�

i��t +
�0

T2
�Q = − B1B2

*� , �3�

�t� +
�0

T1
�� − 1� = −

i

2
�B1B2

*Q* − B1
*B2Q� . �4�

Here Q is the Raman coherence and � is the population
inversion of the two levels separated by ��R. �=1 corre-
sponds to the ground state of the Raman transition. �̃ char-
acterizes the Kerr nonlinearity of the HC-PCF �7�. T1,2 are
the decay times of � and Q. For an ideal soliton solution to
exist one should assume that �0 /T1,2→0. The derivation of
Eqs. �1� and �2�, with �̃=0, from the first principles can be
found for example in Ref. �1�. Parameter s characterizes the
difference in the group velocities of the two waves and it can
be normalized to any convenient number. Without loss of
generality we fix s=−1. Detailed discussion of the normal-
ization procedure in the context of the HC-PCFs is given at
the end of the paper.

The condition that the total population of the two levels is
1, can be expressed as

�2 + �Q�2 = 1. �5�

Equation �5� suggests the well known substitution

� = ± cos �, Q = ei�sin � , �6�

which allows the derivation of a pendulum like equation for
� �12�. The constant phase � and the ± sign can be fixed as
convenient. For �̃=0, this approach leads to explicit soliton
solutions with exponential �	 soliton� or algebraic �2	 soli-
ton� tail decay, as first reported in Ref. �12�. In our notations,
the 	 solitons are given by
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B1 = i�2 sech�2�w�
1 + v

, B2 =�2 sech�2�w�
1 − v

,

Q = tanh�2�w�, � = − sech�2�w�, w = 1/�1 − v2, �7�

where �= t−vz and v is the parameter associated with the
shift of the common group velocity. By analogy with the
model of the two-level atom, these solitons can be called
Raman-SIT solitons.

Below we will demonstrate that the above solution repre-
sents a particular subset of a more general family of soliton
solutions, which can be either dynamically stable or un-
stable. As one can see, the Raman coherence Q in the above
solution has the topological structure of a dark soliton, so
that its amplitude is zero and the phase has a discontinuity at
the center. It will be demonstrated below that the topological
structure is not actually necessary for the soliton existence
and most typically the phase of Q varies smoothly across the
soliton.

The first step in our analysis is to understand the
dispersive properties of the linear waves. Substituting
B1,2	e−ikz−i
t into Eqs. �1� and �2�, assuming some station-
ary value of the Raman coherence Q and neglecting nonlin-
earity we find that k= ±�
2+ �Q�2. Therefore, nonzero Q
opens up the gap in the wave numbers forbidden for propa-
gation of linear waves, see Fig. 1�a�. Propagation of the
solitons with spectrum residing within this gap can, however,
be allowed. For other examples of the solitons supported by
the wave number band gaps see, e.g., Ref. �13�. The exis-
tence of two independent and arbitrary phase rotations
�A1 ,A2 ,Q�→ �A1ei�1+i�2 ,A2ei�1−i�2 ,Qe2i�2� suggests that we
should seek soliton solutions in the form

B1,2 = A1,2���e−i�z�i
z−i
t, Q = q���e−i2
z, � = t − vz .

�8�

A1,2 obeys the ordinary differential equations

�� − i�1 + v����A1 = − qA2 − �̃��A1�2 + 2�A2�2�A1,

�� + i�1 − v����A2 = − q*A1 − �̃��A2�2 + 2�A1�2�A2. �9�

Here � and v parameterize the soliton family and their role is
detailed below. 
 affects the phases of the two fields and
Raman coherence, but not their amplitudes. For the soliton
spectrum to remain within the band gap, the parameters must
obey the inequality �2� �q��2�1−v2�, where �q�� is the coher-
ence amplitude far from the soliton core, see Fig. 1�b�.

We solved the nonlinear system of ordinary differential
equations for A1,2, q, and � numerically, using Eq. �5� as
one of the boundary conditions. We focus here on the case
�q� � =1 and ��=0, i.e., the medium is prepared with coher-
ence and equal population of both levels. See, e.g., Ref. �14�
for methods of such preparation. Another interesting case is
q�=0 and ��=1, i.e., where the medium is unprepared and
the upper level is not populated. In this case the band gap is
closed and therefore the exponential decay of tails is
replaced by the algebraic one. Though most of our results
below can be extended to the case of the algebraic solitons,
we prefer to focus here on the more practical and robust case
of the exponentially localized ones. Figure 1�b� shows the
time profiles of the Raman coherence and of �A1 � = �A2� for
�=v=0, �̃=0 �full lines�, and �̃=0.3 �dashed lines�. One can
clearly see the change of the topological��̃=0� to the nonto-
pological ��̃�0� structure of Q.

The parameter � controls the nonlinearity related shift of
the soliton wave number within the band gap. When ��0,
the soliton spectrum is shifted towards the lower boundary of
the bandgap where �2k /�
2�0, see Fig. 1�a�. This corre-
sponds to the effective anomalous group velocity dispersion
�GVD�, which in the presence of the self-focusing Kerr non-
linearity ��̃�0� triggers the soliton formation mechanisms
known for the NLS equation. NLS-type solitons become
wider and less energetic, when their spectrum is reaching the
spectrum of the anomalously dispersing linear waves. There-
fore, the soliton energy

E =
 ��A1�2 + �A2�2�d� = E1 + E2, �10�

is expected to decrease for � increasing, see Fig. 2. If �̃=0,
then E does not depend on �. In this case the dependence of
the soliton solutions on � can be found analytically. First, we

FIG. 1. �Color online� �a� Dispersion characteristics of the linear
waves for �q� � =1 are shown by the full black lines marked with 1.
Straight lines indicate spectral content of the soliton. Line 2 corre-
sponds to �=v=0. Line 3 corresponds to v=0, �=0.5. Line 4 cor-
responds to �=0, v=0.5. �b� � dependence of ReQ, ImQ, and �A1,2�
for the soliton solutions at �=v=0. Full lines correspond to the
topological soliton at �̃=0 and the dashed lines correspond to the
nontopological one at �̃=0.3.

FIG. 2. �Color online� �a� The total field energy E vs � for
different values of �̃ and v=0. �b� �A1,2� vs � for v=0. Line 1
corresponds to �̃=0 and �= ±0.7. Line 2 corresponds to �̃=0.3 and
�=0.7. Line 3 corresponds to �̃=0.3 and �=−0.7. The full pulse
width at the half maximum is �3 for 2 and �2 for 3.
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observe that the identity �5� can be satisfied by a more gen-
eral substitution, than Eq. �6�, namely

q = ei��i sin � + cos � sin ��, � = ± cos � cos � ,

�11�

where � and � are the two angles to be determined. With
some algebra we have demonstrated that Eqs. �3�, �4�, �8�,
and �9� for v= �̃=0 are satisfied providing that sin �=−�,
tan�� /2�=−tanh�t�1−�2� and �� �−1,1�. This gives the
soliton solutions in the form

B1 = i�2h sech�2th�e−i�z−i
z−i
t,

B2 = �2h sech�2th�e−i�z+i
z−i
t, h = �1 − �2

Q = h tanh�2th� − i�, � = − h sech�2th� . �12�

One can see that for ��0, Q is a complex function with no
phase discontinuity at the soliton center, and so the topologi-
cal structure is destroyed already for �̃=0. The energy of the
solution �12� does not depend on �, because the h parameter
can be scaled away from the integral �10�.

Parameter v controls the slope of the line representing the
soliton spectrum within the band gap, see Fig. 1�a�, and
hence, the relative energies of the two optical fields. Indeed,
when v is deviated from zero to the positive �negative� side
then the soliton spectrum starts approaching the line k=−

�k=
�, which is the dispersion characteristic of the field B2

�B1� for Q=0. The balance of power between the soliton
components changes accordingly �see Fig. 3�a��. Excitation
of a two-frequency Raman SIT soliton by a single frequency
pump pulse is demonstrated in Figs. 3�b� and 3�c�.

We restricted stability analysis of the Raman-Kerr solitons
to direct numerical simulations of Eqs. �1�–�4� initialized
with the solitons. Our numerical scheme was based on the

method of alternating directions. Integration of the equations
for Q and � in t has been done using the five point implicit
Adams method. Integration of the equations for B1,2 in z was
done using splitting of a single z step into three successive
steps with the exact analytical solutions found for B1,2 at
each of them. An extensive series of simulations unambigu-
ously indicate that the topological solitons are stable, while
the finite values of the Kerr nonlinearities and/or � lead to
destabilization of the solitons in some parts of the parameter
space, but not in the entire range of the soliton existence.
Physically, we relate the instability to the unbalanced com-
petition between the SIT-like soliton supporting mechanism
on one side and effective GVD felt by the solitons and the
focusing Kerr nonlinearity on the other.

Let us now fix �̃=0.05 and discuss soliton evolution for
�=0 and various values of v. For v exactly equal or close to
zero the initial soliton profile is weakly unstable. It under-
goes adiabatic change in its velocity, but nevertheless retains
its localized shape over the propagation distance order of 100
dimensionless units. With v increasing, the unstable behavior
becomes more and more noticeable. For example for v=0.6,
see Figs. 4�a�–4�d�, the soliton is quickly destroyed by the
perturbations. The character of the instability changes, how-
ever once v starts approaching 1, see Figs. 4�e�–4�h�. Now
the instability shows itself through the emission of the non-
localized dispersive radiation most noticeable in the weaker
soliton component, see Figs. 4�e� and 4�f�, where v=0.9 ini-
tially. After the emission process is over, a stable solitonic
structure is formed, which propagates with a slightly differ-
ent velocity and a noticeably different value of �. The value
of � changes from the initial �=0 to ��0.11. The positive
values of � increase anomalous GVD �see Fig. 1�a� and the
arguments before Eq. �10��. This restores the balance be-
tween the effective GVD and Kerr nonlinearity, thereby
suppressing the instability. The soliton solution found from
Eqs. �9� and �10� for �=0.11, v=0.91, and �̃=0.05 appears
to be stable in our modeling. Deviating � towards the nega-
tive side, i.e., ��0, shifts the soliton spectrum towards the
upper branch of the linear waves having normal GVD,
�2k /�
2�0, and therefore enhances the instability.

Attempts to observe Raman SIT solitons in experiments
are likely to face the following difficulty: The dispersion
of unconfined gas or gas in a cell is relatively low. Therefore,
the group velocity mismatch between the two fields is
naturally small, which implies that the two branches of

FIG. 3. �Color online� �a� Energies of the soliton components
E1,2 vs v for �=0. The dashed lines are for �̃=0 and the full ones
are for �̃=0.05. �b�, �c� Formation of the Raman SIT soliton from
the initial conditions B1=2 sech�t�, B2=0.

FIG. 4. �Color online� Different scenario of the soliton instabil-
ity for �̃=0.05. �a�–�d� are for v=0.6, �=0, and �e� and �h� are for
v=0.9, �=0. �a� and �e� show �B1�, �b� and �f� show �B2�, �c� and �g�
show �Q�, �d� and �h� show �.
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the dispersion characteristics, in Fig. 1�a�, are close to be
parallel and the GVD induced by the Raman coherence
is small. This in its turn means narrow and hence intense
solitons. Therefore, in order to reduce the peak powers
one should look for means of increasing the difference
in the group velocities of the two fields. HC-PCFs are
strongly dispersive �6� and therefore are expected to provide
significant reduction of the power requirements relative
to gas cells or weakly guiding capillaries. If 
��� is the
propagation constant of a relevant fiber mode then

1,2

�1� =��
��1,2� are the group velocities at the two frequen-
cies of interest and s=sgn�
1

�1�−
2
�1��. Dimensionless coordi-

nate z and time t are linked with the physical distance Z
and physical time T as t�0=T−Z�
1

�1�+
2
�1�� /2, Z=z0z.

Convenient choices for z0 and �0 are z0=2�0 / �
1
�1�−
2

�1�� and
�0=�2T2 / �gss��1N0� �
1

�1�−
2
�1��, so that z0 is the character-

istic walk-off length. Here N0 is the density of molecules
and gss is the steady-state Raman gain �1�. Note that we
have neglected in this work the intrinsic GVD of the fiber
itself, by making a realistic assumption that �1,2 and pulse
duration are such that the corresponding GVD lengths are

much longer than z0. Using data for the typical PCF design,
see, e.g., Refs. �7,8�, we can estimate �
1

�1�−
2
�1� � �0.02/c,

where c is the speed of light in vacuum. �̃ characterizes
the relative strength of the Kerr and Raman nonlinearities:
�̃= �2�S / �
1

�1�−
2
�1� � ����1T2N0 /gss, where S is the effective

area of the fiber mode and � is the intrinsic Kerr nonlinearity
of the fiber. A unit amplitude of �B1,2�2 corresponds to the
peak power �̃ / �z0��	�
1

�1�−
2
�1��−1, which agrees with our

qualitative arguments. Choosing SF6 gas as an example we
have gss	14�10−14 m/W, and �R�2	�23 THz. T2 de-
pends on pressure and on collisions with the glass walls. For
our estimates we use T2�5 ps, see, e.g., Ref. �15�. This
gives z0�8 mm and �0�200 fs. Taking S�60 �m2 and �
from 10−61 / �W m� to 10−51 / �W m�, gives us �̃	0.02–0.2
and typical scaling for the peak power 	2 MW. Thus the
estimates for the typical pulse durations and peak powers are
realistic �7� and can be further optimized through the fiber
design, choice of gas and conditions of operation.
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